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Abstract: A general framework is presented for the interpretation of NMR relaxation data of proteins. The
method, termed isotropic reorientational eigenmode dynamics (iRED), relies on a principal component
analysis of the isotropically averaged covariance matrix of the lattice functions of the spin interactions
responsible for spin relaxation. The covariance matrix, which is evaluated using a molecular dynamics
(MD) simulation, is diagonalized yielding reorientational eigenmodes and amplitudes that reveal detailed
information about correlated protein dynamics. The eigenvalue distribution allows one to quantitatively assess
whether overall and internal motions are statistically separable. To each eigenmode belongs a correlation
time that can be adjusted to optimally reproduce experimental relaxation parameters. A key feature of the
method is that it does not require separability of overall tumbling and internal motions, which makes it
applicable to a wide range of systems, such as folded, partially folded, and unfolded biomolecular systems
and other macromolecules in solution. The approach was applied to NMR relaxation data of ubiquitin
collected at multiple magnetic fields in the native form and in the partially folded A-state using MD trajectories
with lengths of 6 and 70 ns. The relaxation data of native ubiquitin are well reproduced after adjustment of
the correlation times of the 10 largest eigenmodes. For this state, a high degree of separability between
internal and overall motions is present as is reflected in large amplitude and collectivity gaps between
internal and overall reorientational modes. In contrast, no such separability exists for the A-state. Residual
overall tumbling motion involving the N-terminal â-sheet and the central helix is observed for two of the
largest modes only. By adjusting the correlation times of the 10 largest modes, a high degree of consistency
between the experimental relaxation data and the iRED model is reached for this highly flexible biomolecule.

1. Introduction

NMR spin relaxation measurements offer important insights
into protein mobility at atomic resolution.1-6 The objective is
to obtain information about motional amplitudes, collective
dynamics, and correlation times and their dependence on
different factors, such as temperature, buffer condition, the
presence of ligands, and mutations. Such information can be
further used to establish a connection between dynamics and
entropy, which helps to unravel the driving forces behind protein
function.7

Spin relaxation is manifested in NMR in the form of
dissipative evolution of the spin-density operatorσ(t). The
physical origin of spin relaxation is the stochastic modulation
of nuclear spin interactions due to protein motion. The relevant
statistical properties are the variances and covariances of the
lattice functions of these interactions that can be compiled in a
covariance matrixM together with a set of correlation times
{τm}.8 The eigenvalues and eigenvectors of matrixM depict
amplitudes and directions of the eigenmodes of protein dynamics
containing information about motional correlation effects.

A general approach is introduced here for the reconstruction
of covariance matrixM and correlation times{τm} of a protein
using heteronuclear spin relaxation parameters as input (Scheme
1) together with information obtained from molecular dynamics
(MD) computer simulations. A key feature of the approach is
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that it does not rely on the separability of internal and overall
protein motions, which makes it equally well suited for the
comprehensive motional characterization of folded, partially
folded, and unfolded protein systems.

Heteronuclear relaxation data simultaneously reflect the rate
of change of the protein orientation with respect to the external
magnetic field and rates and amplitudes of protein structure
changes. For globular proteins with a compact structure, internal
motions do not markedly alter the protein shape, and they are
often assumed to be separable from overall reorientational
motion in good approximation. As a consequence, the relaxation
data can be interpreted separately in terms of overall and internal
motional effects which represents a convenient conceptual
simplification. This separability assumption forms the basis of
some of the most popular approaches of relaxation data
interpretation including the Lipari-Szabo model-free approach9

and its extension,10 analytical motional models,11,12 and ap-
proaches based on computer simulations.2,3 In all these ap-
proaches, separability is exploited as follows. A model is derived
for the internal correlation function, while an analytical expres-
sion is used for the overall tumbling correlation function. The
latter is typically modeled as an isotropic or anisotropic
reorientational diffusion process. In the case of isotropic overall
tumbling, the overall tumbling part is a monoexponential
function, and the total correlation function is simply the product
of the internal and the overall correlation functions,Ctot(t) )
Coverall(t)‚Cint(t). The spectral-density mapping approach13-15

does not require separability at the first place, but often involves
such assumption when the spectral densities are interpreted in
terms of motional amplitudes and time scales.

Relaxation data can also be interpreted using molecular
dynamics (MD) computer simulations.16-23 For long MD
trajectories of small solutes that extensively sample overall
tumbling motion, the separability of internal and overall motion
can be assessed by comparison of the correlation functionsCtot(t)
and Coverall(t)‚Cint(t) directly calculated from the trajectory.24

However, due to the restricted lengths of current MD trajectories,
overall reorientational motion of large and slowly tumbling
biomolecules is usually inadequately sampled. To obtain the
internal time-correlation functions, a commonly used procedure
first eliminates overall reorientational motion from the trajectory

by aligning each MD conformation (snapshot) with respect to
a reference structure. From the modified trajectory, internal time-
correlation functions are computed. The total correlation function
is then calculated by multiplication with the overall tumbling
correlation function (see above). The overall tumbling correla-
tion times are determined from experimental data or estimated
from hydrodynamic theory3,25or by combining MD simulations
with a numerical solution of the overall tumbling diffusion
equation. The latter method, termed mode-coupling Smolu-
chowski dynamics, has been applied to relaxation data of protein
and DNA systems.26-29

NMR relaxation spectroscopy offers unique opportunities to
study proteins that are partially folded or unfolded.30-36 A
detailed characterization of such states provides useful insights
into the properties of protein folding intermediates and the
protein folding process itself. Furthermore, it has been estimated
that up to 30% of the human genome encodes for proteins that
are natively unfolded or partially folded.37,38Because for highly
flexible systems a molecular reference frame that defines the
orientation of the molecule with respect to the laboratory frame
does not exist, separability of overall and internal motion is
not fulfilled. Consequently, NMR relaxation data interpretation
becomes more difficult. NMR relaxation data of such systems
are often converted to spectral density components32,33,35,39or
interpreted on a residue-by-residue basis by an extended model-
free approach,10 which includes multiple order parameters and
correlation times.30,33,34Alternatively, a continuous distribution
of correlation times can be fitted to the relaxation data,36,40which
is closely related to approaches commonly applied to relaxation
data of synthetic polymers in solution and supercooled liquids.41

Individual protein atoms do not move independently with
respect to each other, but rather in a correlated fashion involving
atom groups of variable sizes.42 Similarly, reorientations of bond
vectorsΩj(t) can exhibit significant amounts of correlation even
after overall tumbling motion is subtracted.43 A collective
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description of NMR relaxation-active motions has recently been
introduced in terms of reorientational eigenmode dynamics
(RED) for data interpretation of a mobile loop region of native
ubiquitin.8 This approach incorporates motional correlations
between reorientations of backbone N-H bonds in the form of
a covariance matrix of spherical harmonics of rank 2 calculated
from a MD trajectory. For molecules for which internal motions
are separable from overall motions, the covariance matrix of
the RED approach is expressed in a molecule-fixed frame. The
reorientational eigenmodes and the amplitudes are determined
by diagonalization of the covariance matrix with each eigenmode
possessing its internal correlation time.8

For more mobile systems, a new situation arises. For example,
for the partially folded A-state of ubiquitin obtained in a
methanol-water mixture, which is discussed in this paper, large-
amplitude reorientational motions of backbone N-H vectors
are observed during MD simulations. While for a 5 nssegment
of the trajectory overall motion can still be approximately
eliminated by aligning each snapshot with respect to a reference
structure,44 for significantly longer simulation times such an
alignment procedure is elusive since a wide range of internal
conformations is sampled and a suitable reference structure does
not exist any longer. Moreover, overall reorientational motion
of the A-state is statistically not well sampled by the MD
trajectory even for simulation times in the tens of nanosecond
range. Thus, correlation functions have nonnegligible statistical
uncertainties, which impedes direct comparison of NMR
relaxation parameters back-calculated directly from the trajectory
with experimental data.

The approach introduced here does not require separability
of internal and overall motion. Similar to the RED concept, it
is based on a covariance matrix analysis of internuclear vector
orientations, represented by spherical harmonics, extracted from
a MD trajectory. The length of presently feasible trajectories
usually precludes that the conformational ensemble is isotropic,
that is, that each internal conformation is represented by a large
number of snapshots with an isotropic orientational distribution.
The new approach, termed isotropic reorientational eigenmode
dynamics analysis (iRED), overcomes this limitation by analyti-
cally integrating each snapshot over an isotropic distribution
of orientations. The resulting eigenmodes and amplitudes, which
reflect both overall tumbling and reorientational internal mo-
tions, allow the quantitative assessment of the separability of
the two types of motions. By adjusting correlation times
belonging to large-amplitude eigenmodes, the agreement be-
tween theory and experiment can be optimized. The iRED
analysis is applied here to two states of ubiquitin that exhibit
vastly different flexibility: the globular native state and the
partially folded A-state.

2. Theory

The main theoretical results of the iRED method are
summarized in this section. Derivations and further explanations
can be found in Appendices A1-A6. According to the relaxation
theory of Bloch, Wangsness, and Redfield,45,46 spin relaxation

parametersT1, T2, and NOE are determined by the spectral
density functionsJj(ω) (see Appendix A1)

whereCj(t) is the time-correlation function of the lattice part
of the spin interaction that causes relaxation

whereYLM(Ωj) are the spherical harmonics of rankL evaluated
at directionsΩj of internuclear vectorj, andM ) -L, ..., L.
The angular brackets indicate averaging over timeτ.

Because the lattice parts of dominant NMR relaxation-active
interactions, such as the magnetic dipole-dipole interaction and
the chemical shielding anisotropy (CSA), can be expressed in
terms of spherical harmonics of rank 2, the covariance matrix
with L ) 2 will be particularly relevant in the following
discussion. On the other hand, the rankL ) 1 case, which
corresponds to the reorientation of three-dimensional unit
vectors, is more intuitive.43 Therefore, expressions are given
for generalL values. Spin relaxation measurements are usually
performed in isotropic protein solutions, which means that each
internal conformation has the same overall orientational prob-
ability. As a consequence,Cj(t) does not depend onM (see,
e.g., ref 2).

We consider the evaluation of eqs 1 and 2 from a molecular
dynamics (MD) or Monte Carlo trajectory of a protein of total
length T consisting ofN conformations (snapshots). For a
conformation sampled at timet, the principal-axis directions
Ωj(t) ) (θj(t), æj(t)), j ) 1, ...,n, of then dipolar interactions
of interest (or of other relaxation-active interactions such as
chemical shielding anisotropy) are extracted. During the simula-
tion, the orientation of the protein is not fixed; that is, the protein
is allowed to undergo free rotational tumbling. For the subse-
quent analysis, the snapshots do not need to be orientationally
aligned with respect to a reference structure. In contrast to the
experimental situation, a MD trajectory of finite length will
generally produce an anisotropic reorientational distribution,
which would lead to a dependence ofCj(t) on M.

In the iRED method, the covariance matrix of theYLM(Ωj(t))
functions is calculated from the trajectory. In a subsequent step,
the covariance matrix is isotropically averaged over all possible
orientations of each snapshot (for a mathematical treatment see
Appendix A2). The spherical symmetry introduced by the
isotropic averaging leads to a substantial simplification of the
covariance matrix with all relevant information contained in the
real symmetricn × n matrix M with elements

wherePL(x) is the Legendre polynomial of orderL (P1(x) ) x,
P2(x) ) (3x2 - 1)/2, etc.),Ωk - Ωl denotes the angle between
directionsΩk and Ωl taken from the same snapshot, and the
horizontal bar indicates averaging over all snapshots of the
trajectory.47
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The reorientational eigenmodes and their amplitudes are the
eigenvectors|m〉 and eigenvaluesλm of M fulfilling M |m〉 )
λm|m〉 (Appendix A2). The eigenmodes describe correlated
modulations of different spin interactions, and the eigenvalues
correspond to the variances of the amplitude fluctuations of the
trajectory along each eigenmode. The eigenvalues fulfillλm g
0, and their sum is equal to the number of spin interactionsn.
Covariance matrixM plays a key role in NMR relaxation
representing in a condensed form all spatial aspects of motional
information obtainable from spin relaxation experiments of an
isotropic protein sample. In contrast to the RED approach,8 for
the computation of the reorientational covariance matrixM , no
assumption about the existence of a molecular reference frame
is made in which internal and overall motions are separable in
a statistical sense. The eigenmodes and eigenvalues depict these
motions in terms of amplitudes and motional correlation effects
experienced by the different spin interactions. For an internally
rigid molecule, covariance matrixM has at most 2L + 1 nonzero
eigenvalues. The corresponding eigenmodes do not reflect
internal dynamics, and they can be used to model overall
reorientational motion.

In matrix M , the time-sequence information of the original
MD trajectory has been lost; thereforeM contains no informa-
tion on motional correlation times associated with individual
reorientational modes|m〉 or information about anisotropic
rotational tumbling. Such information can be obtained by
calculating time-correlation functionsCm(t) from time-dependent
amplitudesam,l(t) that are obtained by projecting MD snapshots
on the eigenmodes (Appendix A3):

where the average extends over the trajectory. Correlation times
τm of these correlation functions can be determined by expo-
nential fitting (Appendix A3).

For the systems studied here, theCm(t) are found to decay in
good approximation monoexponentially (see Application sec-
tions). In this case, the spectral density functionJ(ω) of eq 1
can be analytically expressed as

where δSj,m
2 ) λm||m〉j|2 are theprincipal order parameter

componentscorresponding to the decay ofCj(t) due to mode
m. More details can be found in Appendix A4. If overall and
internal motions are separable, the Lipari-Szabo Sj

2 order
parameter of interactionj is given by

where the sum extends only over internal modesm′.
Calculated and experimental relaxation parameters are quan-

titatively compared as usual by

where Xi
calc are the calculated andXi

exp the experimentalT1,
T2, and NOE parameters, andσi are the corresponding experi-
mental errors. As described below, the correlation timesτm can
be adjusted to minimizeø2 using a least-squares fitting
procedure.

3. MD Simulations

Two MD simulations were performed under periodic bound-
ary conditions using the program CHARMM.48,49 The first
trajectory corresponds to native ubiquitin, and the second one
corresponds to a partially folded state of ubiquitin. For the native
trajectory, an all-atom representation of the X-ray structure of
ubiquitin50 was embedded in a cubic box including 2909 explicit
water molecules. The simulation was performed at a temperature
of 300 K for 6 ns. More details on the trajectory are described
elsewhere.22,44 The first 1 ns of the MD simulation was used
for equilibration, and a total of 1000 snapshots with a time
increment of 5 ps were analyzed from the final 5 ns of the
trajectory (segment 1-6 ns).

For the trajectory of the partially folded state, ubiquitin was
simulated under the conditions experimentally known to induce
the A-state, that is, a 60%/40% (v/v) methanol/water mixture
at low pH.34,57,58An all-atom representation of the protein was
protonated and immersed in a cubic box containing a total of
1727 water molecules and 1102 methanol molecules. During
the first part of the 70 ns trajectory, the temperature was varied
to guide and to speed-up the conformational transformation of
the native state into a state resembling the A-state, while the
final 42.8 ns (segment 27.2-70.0 ns) of the trajectory were
performed at 300 K. An analysis of the first 33 ns of this
simulation has been reported elsewhere.44 In the present work,
800 snapshots of the final 40 ns of the trajectory corresponding
to the segment starting at 30 ns and ending at 70 ns sampled at
a time increment of 50 ps were used for analysis.

4. Application to Native Ubiquitin

Isotropic RED Analysis of Rank 1. Characteristic features
of the iRED method can be demonstrated for the rankL ) 1
case applied to the 6 ns MD simulation of the native state of
ubiquitin. During the simulation, ubiquitin is stable and retains
a highly globular character with a radius of gyrationRg ) 11.67
( 0.08 Å. An iRED analysis of rank 1 was performed on the
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l)-L

L

〈am,l*(τ + t)‚am,l(τ)〉τ (4)

Jj(ω) ) ∫-∞

∞
Cj(t) cosωt dt ) ∑

m

δSj,m
2

2τm

1 + ω2τm
2

(5)

1 - Sj
2 ) ∑

m′
δSj,m′

2 (6)

ø2 ) ∑
i

(Xi
calc - Xi

exp)2

σi
2

(7)

Study of Dynamics of Folded and Nonfolded Proteins A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 124, NO. 16, 2002 4525



72 backbone N-H vectors (excluding the N-terminal residue)
using 1000 snapshots from the final 5 ns of the MD simulation.
For comparison, a standard RED analysis8 was carried out on
the same vectors after overall translational and reorientational
motions were removed by a least-squares superposition of each
snapshot, including backbone and side-chain atoms, with respect
to the “half-time” snapshot at 3.5 ns.

A convenient way to visualize the separability of overall
and internal motions is shown in Figure 1a by plotting the
mode collectivitiesκ versus the eigenvaluesλ for the two
analyses.κ gives the percentage of interactions significantly
affected by a given mode calculated according to eq A25, while
λ represents the variance of the amplitude fluctuation of the
trajectory along this mode. The iRED analysis exhibits three
very large amplitude modes with high collectivities indicating
that between 51% and 76% of all backbone N-H vectors are
significantly affected by these reorientational modes. They
predominantly reflect rigid-body overall rotational motion, and
they are separated from all other modes by a large gap in the
mode amplitudesλ. The larger the gap, the better separable are
the overall and internal motions. A quantitative measure for the
gap magnitude is the separability indexg1 ) 14.05, which is
defined in eq A26. There is also a gap in collectivitiesκ between
the overall tumbling modes (κ > 50%) and the largest internal
modes (κ < 20%).

In contrast, for the standard RED analysis, which operates
on aligned snapshots, the overall reorientational modes disap-
pear, and the internal modes are only slightly changed both in
the mode amplitudesλ and in the collectivitiesκ. Thus, the
alignment procedure effectively removes overall motions.
Therefore, overall and internal motions are separable in good
approximation as is expected for this globular protein system
exhibiting a well-defined structure undergoing restricted internal
motion. As noted previously,43,44the internal mode collectivities
κ of this globular protein exhibit a characteristic distribution as
a function ofλ with some of the lowest collectivities belonging
to the smallest and the largest amplitude modes.

The three largest eigenvalues of the iRED analysis vary
significantly: λ70 ) 11.36,λ71 ) 20.40,λ72 ) 35.12. They do
not contain information about isotropic or anisotropic overall
tumbling motion, but rather reflect the anisotropy of the
orientational distribution of the average directions of the N-H
vectors. It can be shown using distance geometry theory59 that
the average orientations of the internuclear vectors are deter-
mined by the eigenvectors and eigenvalues.60

Isotropic RED Analysis of Rank 2.The iRED and standard
RED analyses were performed on the same snapshots for rank
2 spherical harmonics with the resulting mode collectivitiesκ

and eigenvaluesλ shown in Figure 1b. In contrast to the rank
1 case, there are now five overall rotational modes for the iRED
analysis. The separability index isg2 ) 6.30 (eq A26), which
is less than one-half of theg1 value of the rank 1 case.
Amplitudes and collectivities of internal modes are again similar
for iRED and standard RED, and they qualitatively follow the
same distribution as for the rank 1 case of Figure 1a.

Each modem yields, according to eq 5, a Lorentzian
contribution to the spectral densityJj(ω) of interaction j
determined by the principal order parameter componentδSj,m

2

with correlation timeτm. The δSj,m
2 components of the 10

modes with largest amplitudesλm are shown in Figure 2. The
overall reorientational modesm) 68, ..., 72 are highly collective
affecting a large portion of all N-H vectors in a correlated
fashion. In contrast, the five largest internal modesm ) 63, ...,
67 have a much more local character and mainly affect the
C-terminal end and residues belonging to loop regions.

For the iRED analysis of rank 2, the correlation timesτm of
protein motions along the reorientational eigenmodes can be
estimated from the time-correlation functionsCm(t) calculated
for each mode using eqs A17-A19. TheCm(t) follow for the
five largest internal modesm) 63, ..., 67 in good approximation
a monoexponential decay, as is the case for most of the other
internal modes, and their correlation timesτm can be determined
using eq A19. As is discussed in Appendix A3 and in the
Supporting Information, theτm values of the internal modes
correspond to effective correlation times rather than internal
correlation timesτm′. The τm values are slightly shorter than
the τm′ values due to the overall tumbling in accordance with
eq A21.

The correlation functions of the five overall reorientational
modesm ) 68, ..., 72 have not converged during the 5 ns
simulation. Therefore, reliable estimates of their correlation
timesτm cannot be made from the trajectory. The extractedτm

(59) Crippen, G. M.; Havel, T. F.Distance Geometry and Molecular Conforma-
tion; Research Studies Press: Letchworth, U.K., 1988.

(60) Prompers, J. J.; Bru¨schweiler, R.Proteins2002, 46, 177-189.

Figure 1. Mode collectivitiesκ vs eigenvaluesλ for the RED and the
isotropic RED analyses performed on the 72 backbone N-H vectors of
native ubiquitin using (a) Cartesian vectors (equivalent to rankL ) 1
spherical harmonics) and (b) rankL ) 2 spherical harmonics. The results
for the isotropic RED analyses are shown as filled circles, and the results
for the standard RED analyses are shown as open circles.κ, which can
vary between 1.4% and 100%, is a measure for the relative number of N-H
vectors that are significantly affected by a given mode.
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values are clearly shorter than the experimentally determined
overall tumbling correlation times of ubiquitin (Table 1). The
distribution of the original τm values is depicted in the
Supporting Information.

Fitting of iRED Parameters to Experimental Data. Several
sets of backbone15N relaxation data of native ubiquitin have
been reported in the literature.22,51,52In the following analysis
backbone,15N T1 relaxation times and{1H}-15N heteronuclear
NOEs collected at 400 and 600 MHz magnetic field strengths
and15N T2 relaxation times measured at 600 MHz were taken
from Table 1 of the Supporting Information of Lienin et al.22

All data were collected at 300 K, and they are displayed as
filled circles in Figure 3. Estimates of the statistical uncertainty
of the experimental data, that had been obtained by repeating
the experiments, are as follows:22,53 the standard deviations

are 1.5% forT1 values at 400 and 600 MHz, 4% for NOEs at
400 MHz, 2.5% for NOEs at 600 MHz, and 2% forT2 values
at 600 MHz.

15N T1, T2, and NOE relaxation parameters were calculated
from the iRED analysis of the 1-6 ns segment of the trajectory.
The spectral density functions were determined according to
eq 5 and inserted into the expressions forT1, T2, and NOE given
in Appendix A1. Dipolar relaxation contributions were deter-
mined using a N-H bond length ofrNH ) 1.04 Å,54,55and CSA
contributions were computed using an axially symmetric15N
CSA tensor with the symmetry axis parallel to the N-H vector
and with an asymmetry∆σ ) -176 ppm. The calculated values
qualitatively reproduce most of the trends, but they have a large
offset as compared to the experimental relaxation parameters,
which is caused primarily by the correlation times of the five
overall reorientational modes estimated from the MD trajectory,
which are too short, leading to aø2 value defined in eq 7 of
3.23× 106.

To improve agreement between iRED results and experi-
mental relaxation data, correlation times of the reorientational
eigenmodes were adjusted. First, only correlation timesτm of
the five largest, overall reorientational modesm ) 68, ..., 72
were adjusted by a nonlinear least-squares fitting procedure,
which causes an increase of the correlation times by nearly an
order of magnitude to values around 4 ns. Theø2 value improves
by almost a factor of 100 (ø2 ) 3.43 × 104). The effective
overall tumbling correlation timeτc, which is calculated as the
average ofτ68, ..., τ72, is 4.05 ns, which is very close to the

Figure 2. Reorientational mobilities of backbone N-H vectors of native
ubiquitin expressed in terms of principal order parameter components
δSj,m

2 of reorientational modesm ) 63, ..., 72 derived from the covariance
matrix M (eq 3).

Table 1. Correlation Times for the Native State

original MD fitteda

τ72 (ns) 0.59 4.12( 0.03
τ71 (ns) 0.66 3.93( 0.02
τ70 (ns) 0.65 4.27( 0.04
τ69 (ns) 0.53 4.27( 0.07
τ68 (ns) 0.44 3.89( 0.08

τ67 (ps) 490 165( 5
τ66 (ps) 423 0.1( 0.3
τ65 (ps) 369 631( 4
τ64 (ps) 368 3344( 84
τ63 (ps) 172 4446( 370

a Standard deviations determined from a Monte Carlo error analysis
consisting of 50 simulations.

Figure 3. 15N T1 andT2 relaxation times and{1H}-15N NOEs at 600 MHz
(black circles) and 400 MHz (gray circles) proton frequency for native
ubiquitin. Experimental relaxation parameters22 are shown as filled circles.
Relaxation parameters calculated using the iRED analysis of rank 2 applied
to the 5 ns native MD trajectory after fitting the correlation times of the 10
largest modesm ) 63, ..., 72 are shown as open circles.
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value of 4.03 ns determined using a model-free analysis of the
same experimental data.22

Next, the five largest internal modes were also included in
the fit by simultaneously adjusting the correlation times of the
10 largest modesm ) 63, ..., 72. Theø2 value drops by almost
an order of magnitude to 3.71× 103. The back-calculated
relaxation parameters are displayed as open circles in Figure 3.
For residues belonging to regular secondary structures (rigid
core residues), the agreement is very good, and also for flexible
regions, the data are well reproduced. Considering that only 10
fit parameters are used for the interpretation of a total of 310
relaxation parameters, the quality of the fit is remarkably good.
The adjusted correlation times are given in Table 1 together
with the original values. The effectiveτc value slightly increases
to 4.10 ns remaining close to the model-freeτc value. The
correlation timesτ68, ..., τ72 vary between 3.89 and 4.27 ns,
which confirms earlier findings that native ubiquitin tumbles
in good approximation isotropically.52

Overall tumbling anisotropy can be assessed by a more
detailed analysis of the variations among the correlation times
τ68, ...,τ72. Although these values depend also on the associated
eigenmode directions, which do not necessarily coincide with
the diffusion tensor principal axes, it is possible to obtain
estimates for the principal axis values of the rotational diffusion
tensor using Woessner’s equations.56 From theτ68, ...,τ72 values,
the following diffusion tensor principal axis values are ob-
tained: Dxx ) 37.4 × 106 s-1, Dyy ) 40.3 × 106 s-1, Dzz )
44.1× 106 s-1. A measure for the anisotropy of the diffusion
tensor is 2Dzz/(Dxx + Dyy) ) 1.14, which compares well with
the corresponding value of 1.16 found by Tjandra et al.52 When
the fitting is constrained such that modesm ) 68, ..., 72 have
all the same correlation timeτc, the optimizedτc value is 4.11
ns. The fitting results thereby change only little withø2

increasing by 9% toø2 ) 4.04× 103.
If the correlation times of the 15 largest modes (m ) 58, ...,

72) are individually adjusted, theø2 value further decreases to
ø2 ) 3.12× 103. The correlation times of the 10 largest modes
thereby remain close to the ones obtained from the fit using
only 10 correlation times as variable parameters.

5. Application to the A-State of Ubiquitin

Structural Features. Analysis of the initial 33 ns of the
trajectory of the partially folded state of ubiquitin44 shows that
during the 5 ns between 28 and 33 ns the N-terminal half of
the simulated state is similar to the A-state experimentally
characterized by circular dichroism57 and NMR.34,58It contains
a nativelike N-terminal antiparallelâ-sheet and a central helix,
but in contrast to the experimental studies and consistent with
earlier MD work,61 the simulation lacks helical propensity in
the C-terminal half of the polypeptide chain. The trajectory used
for the following iRED analysis was extended beyond the
original 33 ns by an additional 37 ns leading to a total length
of 70 ns. During the final 37 ns, no formation of helical structure
is observed in the C-terminal half of the protein. Because of
the qualitative differences in the C-terminal half between
experimental and simulated properties, we decided to analyze
the N-terminal half of ubiquitin (residues 1-29) whose structural
dynamic properties qualitatively match the experimental find-
ings.

During the final 40 ns of the MD simulation of the partially
folded state of ubiquitin, the protein is highly dynamic and
adopts a large range of conformations, including conformers
that are compact and some that are more extended (see snapshots
depicted in Figure 4a). The N-terminalâ-sheet with residues
3, 4 and 14, 15 is quite stable between 30 and 50 ns, while it
undergoes unfolding and refolding between 50 and 70 ns (Figure
4a). The central helix (residues 22-28), while always present,
is somewhat unstable at its C-terminal end fluctuating between
an R-helix and aπ-helix.

Isotropic RED of Rank 2. The iRED analysis of rank 2 was
applied to the 27 backbone N-H vectors of the N-terminal half
of the A-state (residues 1-29, excluding Met 1 and Pro 19)
using 800 snapshots from the final 40 ns of the A-state
simulation with a time increment of 50 ps. The mode collectivi-
ties κ versus the eigenvaluesλ are shown in Figure 5. For the
partially folded state, there is no clear gap between the overall
rotational modes and the internal modes, which is also reflected
in a low separability indexg2 ) 2.51. This behavior, which
sharply contrasts the one of the native state (Figure 1), suggests
that separability of internal and overall motions is clearly not
fulfilled. The small separability indexg2 also indicates that no
static structural model exists that is compatible with the
covariance matrixM . Therefore, procedures for the back-
calculation of relaxation parameters requiring alignment of each
snapshot with respect to a reference structure are not suitable
in this case.

The A-state results qualitatively differ from the native
simulation also with respect to the collectivity properties of the(61) Alonso, D. O. V.; Daggett, V.J. Mol. Biol. 1995, 247, 501-520.

Figure 4. Reorientational motions of the helix with respect to the sheet in
the A-state of ubiquitin. Panel a shows selected snapshots along the trajectory
at 30, 40, 50, 60, and 70 ns. The structures were aligned on the CR atoms
of helix residues 22-28 of the snapshot at 30 ns, and ribbon representations
were created with the program MOLMOL.63 Panel b shows the angles as
a function of simulation time between the helix axis (average of N-H
vectors in the helix) and three orthogonal coordinate axes rigidly attached
to the sheet (average of N-H vectors in the sheet (black line), axis
perpendicular to average N-H vector in the plane of the sheet (dark gray
line), and axis perpendicular to the plane of the sheet (light gray line)).
Panel c shows projection coefficientsam,l(t) belonging to the largest mode
m ) 27: a27,0 (upper panel), Re{a27,1} (middle panel, black line), Im{a27,1}
(middle panel, gray line), Re{a27,2} (lower panel, black line), Im{a27,2}
(lower panel, gray line).
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high-amplitude modes as can be seen in Figure 5; the collectivi-
ties steadily increase with increasingλ without exhibiting a
characteristic drop for the largest internal modes observed for
native ubiquitin (Figure 1).43 The principal order parameter
componentsδSj,m

2 for the 10 largest modes are displayed in
Figure 6. These modes have notably high collectivities between
34% and 60%. The helix and the sheet are simultaneously
affected only by modes 27 and 25, while all other modes
predominantly involve theâ-sheet and the hinge region. Mode
27 uniformly and strongly affects the helix and, to a lesser
extent, selected parts of theâ-sheet, while mode 25 modulates
parts of the sheet more strongly than the helix. Modes 27 and
25 reflect what is left of the structural “long-range” order

between the two secondary structural elements. The internally
dynamic character of theâ-sheet and the loop connecting the
two strands is manifested in the form of the different subsets
of N-H vectors involved in different modes.

The extent of reorientational motions of the helix with respect
to the sheet during the simulation can be assessed from the
angles between the helix axis, which is defined as the average
orientation of all N-H vectors of the helix, and three orthogonal
vectors rigidly attached to the sheet: one vector pointing along
the average N-H vector orientation in the sheet, one perpen-
dicular to the average N-H vector in the plane of the sheet,
and one perpendicular to the plane of the sheet. These angles
are displayed as a function of the simulation time in Figure 4b
together with selected backbone structures aligned with respect
to the helix (panel a). During the simulation, the sheet undergoes
almost a 180° flip with respect to the helix. The projection
coefficientsa27,l(t) (1 ) -2, ..., 2) of the snapshots on the modes
belonging to mode 27 of matrixM show significant modulations
(Figure 4c). They also reflect the insensitivity of spherical
harmonics of rank 2 with respect to the 180° flip as is manifested
in similar projection coefficients at 40 and 70 ns.

This has direct implications for the convergence behavior of
the principal order parameter components. Separate analysis of
the 10 ns MD segment between 40 and 50 ns yields for the
largest six modes a very similar behavior as the one observed
in Figure 6. This indicates, consistent with Figure 4c, that the
convergence of the covariance matrix is better than expected
from the snapshots depicted in Figure 4a.

Correlation timesτm were extracted from time-correlation
functions Cm(t) using eq A19. The modes decay in good
approximation monoexponentially as is illustrated for the two
correlation functions belonging to mode 27 and mode 20 of
the A-state plotted in Figure 7. The distribution of all correlation
times is given in the Supporting Information. All extracted
correlation times are larger than 250 ps, indicating that for an
increasing trajectory length fast structural fluctuations are
dominated by slower time-scale events.

Fitting of Isotropic RED to Experimental Data. For the
A-state,15N T1 (at 400, 600, and 800 MHz) andT2 (at 400 and
600 MHz) relaxation times and{1H}-15N heteronuclear NOEs
(at 600 and 800 MHz) were taken from Table 2 of the
Supporting Information of Brutscher et al.34 All data were
collected at 300 K, and they are shown for the N-terminal half
of the protein as filled circles in Figure 8. Errors in the
experimental data were estimated from the standard deviations
of multiple measurements at 600 MHz and are in the range of
4 ( 2% for T1, 9 ( 4% for T2, and 7( 4% for the NOE, while
duplicate recordings of NOE spectra at 800 MHz yielded a
relative error of 2( 1%.34 TheT2 relaxation times of residues
Thr 9 and Thr 12 were found to have exchange contributions,34

and these data points were excluded from the analysis. This
yields a total of 157 experimental relaxation parameters used
for the following iRED analysis.

The 15N T1, T2, and NOE relaxation parameters back-
calculated from the trajectory (using eqs 5, A1-A3) without
adjustment of correlation times cannot satisfactorily reproduce
the experimental data as is reflected in a highø2 value of 1.42
× 104. Adjustment of the correlation times of the five largest
modesm ) 23, ..., 27 leads to a significant improvement (ø2 )
2.54× 103), and adjustment of the correlation times of the 10

Figure 5. Mode collectivitiesκ vs eigenvaluesλ for the iRED analysis of
rank 2 performed on the 27 backbone N-H vectors of the N-terminal half
of the A-state of ubiquitin.

Figure 6. Reorientational mobilities of backbone N-H vectors of the
N-terminal half of the A-state of ubiquitin expressed in terms of principal
order parameter componentsδSj,m

2 of reorientational modesm ) 18, ..., 27
derived from covariance matrixM (eq 3).
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largest modesm ) 18, ..., 27 further improves the fit (ø2 )
1.42× 103). The adjusted correlation times for the 10-parameter
fit are given in Table 2 together with the original values. The
best fitting relaxation parameters are plotted in Figure 8.

The characteristic B0-field dependence of the experimental
data is generally well reproduced by the fit. In the experimental
data, three regions with distinct relaxation behavior can be
identified: the â-sheet (residues 2-15 including the loop
between the two strands), the helix (residues 22-29), and a
hinge region connecting the sheet and the helix (residues 16-
21). These trends are well reproduced by the fitted data, except
for the T2 data of the hinge region where the fittedT2 times
have a systematic offset toward shorter values. The original
estimates for the correlation times of the five largest modes are
too small, while for the other five modes, the adjusted correlation

times do not differ much from the original estimates, except
for mode 20, which is shortened to 24 ps.

Brutscher et al.34 analyzed15N relaxation data of the A-state
on a residue-by-residue basis using an extended version of the
model-free approach. This involved five independent parameters
per residue including an individual overall tumbling correlation
timeτc and a fast and a slow internal correlation time associated
with a fast and slow order parameter, respectively. The model-
free analysis was repeated here for the N-terminal 29 residues
using the same parameters for the N-H distance and15N CSA
as for the iRED analysis (rNH ) 1.04 Å and∆σ ) -176 ppm).
The results of the extended model-free analysis and iRED are
compared in Figure 9 for four residues at the following positions
in the protein sequence: Lys 11 is located in the loop region
between the twoâ-strands, Leu 15 is in theâ-sheet, Asp 21 is
in the hinge region between the sheet and the helix, and Asn
25 is in the helix. TheδSj,m

2 versusτm values obtained from the
iRED analysis are superimposed on the extended model-free
parameters (S2 vs τc, A1 vs τ1, andA2 vs τ2) for each of the four
residues, whereAk (k ) 1, 2) are the contributions to 1- S2

with correlation timesτk. Both analyses cover a similar range
of correlation times. In a few cases, such as for the slowest
time-scale contributions to residue 25, a model-free data pair
directly corresponds to an iRED mode contribution. In most
cases, however, the model-free parameters provide a “coarse-

Figure 7. Time-correlation functions∆Cm(t) ) Cm(t) - Cm(t f T)
calculated according to eqs A17, A18 of two selected reorientational
eigenmodesm ) 27 andm ) 20 of the N-terminal half of the A-state of
ubiquitin derived from covariance matrixM (eq 3).

Table 2. Correlation Times for the A-State

original MD fitteda

τ27 (ps) 1631 9574( 179
τ26 (ps) 1132 3702( 190
τ25 (ps) 1415 2603( 356
τ24 (ps) 1565 7750( 295
τ23 (ps) 2420 9721( 289
τ22 (ps) 1185 1373( 56
τ21 (ps) 868 1360( 51
τ20 (ps) 700 24( 3
τ19 (ps) 887 1125( 87
τ18 (ps) 567 900( 55

a Standard deviations determined from a Monte Carlo error analysis
consisting of 50 simulations.

Figure 8. 15N T1 andT2 relaxation times and{1H}-15N NOEs at 800 MHz
(dashed line), 600 MHz (solid line), and 400 MHz (dotted line) proton
frequency for the N-terminal half of the A-state of ubiquitin. Experimental
relaxation parameters are shown as filled circles. Relaxation parameters
calculated using the iRED analysis of rank 2 applied to the 40 ns A-state
MD trajectory after fitting the correlation times of the 10 largest modesm
) 18, ..., 27 are shown as open circles.
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grained” representation of the more detailed iRED dynamics
parameters.

6. Discussion and Conclusion

Over the past, NMR relaxation measurements of proteins
have provided a wealth of spatially resolved information on
motional amplitudes and time scales. Standard procedures for
data interpretation including the model-free approach, analytical
models, and MD-based procedures can provide insightful
information for globular protein systems where internal motions
can be defined with respect to a reference frame defined by
the average positions of all atoms or a subset thereof. On the
other hand, for highly mobile polypeptide states that do not
fulfill the fundamental assumption of separability between
internal and overall motions, these approaches are not applicable
any longer, or the physical meaning of the fit parameters
becomes unclear.

The isotropic reorientational eigenmode analysis approach
introduced here addresses dynamics in the laboratory frame.
Its main features are: (i) the spatial information about protein
motion is described in terms of variances and covariances of
the spherical harmonics representing the lattice parts of the
modulated spin interactions; (ii) the isotropy of the protein
ensemble is exploited, which considerably simplifies the cova-
riance matrix and its analysis.

In principle, it is possible to construct covariance matrixM
from relaxation experiments by measuring auto- and cross-
correlated relaxation parameters at various magnetic fields to
reconstruct spectral density functions and, by inverse Fourier
transformation, the auto- and cross-correlation functionsCµν(t)
of all interaction pairsµν. ElementMµν of matrix M is then
directly proportional toCµν(0). In practice, however, cross-
correlated relaxation rates of spin interactions that are far apart
are difficult to measure. Therefore, an alternate route was chosen
here that uses MD simulations for the evaluation of the matrix

elements ofM . Because protein MD trajectories are currently
too short to produce an isotropic distribution of conformers,
each snapshot is represented in the covariance matrix by an
infinitely large number of isotropically reoriented replicas. The
same strategy is used in the isotropically distributed ensemble
(IDE) analysis method.60

Inspection of the eigenvalue distribution ofM and of the
separability indexgL allows one to quantitatively assess how
well separability of overall and internal motions is fulfilled. In
contrast, the reorientational eigenmodes ofM reflect the
correlated modulations of different spin interactions. Initial
guesses for the correlation times of each reorientational eigen-
mode are obtained from the time-correlation functions of the
projection coefficients of the snapshots on the modes.

Application of the method to backbone15N relaxation
parameters of native ubiquitin yields a separability index of
g2 ) 6.3, indicating that, as one would expect for such a
globular protein system, overall and internal motions are
separable in good approximation. Adjustment of only 10
correlation times belonging to the largest amplitude modes yields
good agreement between theory and experiment for the 310
relaxation parameters collected for this protein. For comparison,
a standard model-free analysis involves 2‚62 + 1 ) 125 fit
parameters leading to a lowerø2 value but without offering
information about motional correlations between different N-H
vectors. The iRED analysis of rank 2 provides such information.
It decomposesSj

2 order parameters into the principal order
parameter componentsδSj,m

2 , which correspond to the contri-
bution of modem to the modulation of spin interactionj. The
1 - Sj

2 values are recovered by summation ofδSj,m
2 , over the

internal modesm′.
The correlation times of the five overall tumbling modes

contain useful information about the rotational diffusion tensor
and its anisotropy. Because these eigenmodes do not necessarily
coincide with the principal axes of the diffusion frame, the
correlation times yield an estimate of the lower bound of the
tumbling anisotropy. Isotropic RED fundamentally differs in
objective and method from the mode-coupling Smoluchowski
dynamics approach.26-29 The latter aims at a prediction of
overall tumbling behavior of a fluctuating protein system using
a semiempirical Smoluchowski dynamics approach.26,29Isotropic
RED, on the other hand, is based on a principal component
analysis of irreducible lattice functions. The overall tumbling
observed during a finite MD trajectory is extrapolated to an
isotropic ensemble, and correlation times are empirically
adjusted to optimally reproduce experimental NMR relaxation
parameters. Isotropic RED is also entirely different from the
recently proposed structural mode-coupling approach,62 which
characterizes dynamics independently for different sites, whereas
iRED represents a collective description of reorientational
motions.

For a “well-behaved” globular protein that fulfills the
separability condition, such as native ubiquitin, iRED is similar
to the RED approach,8 except that no decision has to be made
with respect to the choice of the overall tumbling model. The
particular strength of iRED becomes apparent when the
separability between overall and internal motions breaks down.
This situation applies for the partially folded and highly mobile

(62) Tugarinov, V.; Liang, Z.; Shapiro, Y. E.; Freed, J.; Meirovitch, E.J. Am.
Chem. Soc.2001, 123, 3055-3063.

Figure 9. Eigenmode order parameter componentsδSj,m
2 vs correlation

timesτm (filled circles) for residues Lys 11 (loop betweenâ-strands), Leu
15 (â-sheet), Asp 21 (hinge region between the sheet and the helix), and
Asn 25 (helix).τm was adjusted for the 10 largest modesm ) 18, ..., 27.
Also shown as crosses are the parameters from an extended model-free
analysis:34 S2 vs τc, A1 vs τ1, andA2 vs τ2.
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A-state analogue of ubiquitin for which the gap in the iRED
amplitude distribution between internal modes and overall
tumbling modes vanishes (Figure 5), which is also accompanied
by a small separability indexg2 ) 2.51. Thus, a distinction
between internal and overall modes is impossible for this
partially folded state. Because during the simulation the helix
remains more intact than does the sheet, which undergoes
significant internal fluctuations, the 10 largest-amplitude modes
of Figure 6 modulate mainly N-H vectors belonging to the
sheet. The largest mode, which affects the helix as a whole
together with selected N-H vectors of the sheet, and mode 23,
which mainly operates on the hinge region (residues 16-21)
that connects the sheet and the helix, are the exceptions.

When separability breaks down,Sj
2 order parameters of eq 6

become zero, while the mode-specific principal order parameter
componentsδSj,m

2 remain informative. Because some of the
correlation times exhibited by the A-state simulation fall into
the nanosecond range, the separability index decreases with
increasing simulation time. For example, for the first 5 ns of
the 40 ns segment, which was described previously,44 g2 ) 3.69,
indicating that separability is better fulfilled for this subsegment
of the trajectory.

Satisfactory agreement between experiment and theory is
achieved by adjusting the correlation times of some of the largest
amplitude modes by up to a factor of 6 (Table 2). Thus, the
iRED analysis indicates for the N-terminal half of the A-state
fundamental agreement between the MD trajectory and the NMR
data. The dynamics of the A-state cover a wider range of
correlation times than does native ubiquitin as is already seen
when triexponential correlation functions are fitted to the
relaxation parameters of individual backbone15N nuclei.34 The
iRED results corroborate and refine these findings yielding an
even wider distribution of time scales displayed in Figure 9. In
fact, the extended model-free parameters can be viewed as a
coarse-grained amplitude and correlation time distribution of
the iRED distribution.

In a recent study, NMR relaxation parameters of the natively
unfolded form of pro-peptide subtilisin could be interpreted
using a continuous Cole-Cole distribution for slow correlation
times together with a single “local” correlation time.40 For the
ubiquitin A-state, the iRED analysis also suggests the presence
of multiple slow correlation times (Figure 9). A Cole-Cole-
like correlation-time distribution is, however, not apparent.

In summary, the iRED method provides a general framework
for the characterization of macromolecular dynamics on nano-
and subnanosecond time scales. Unlike most other approaches
for NMR relaxation interpretation, it is not restricted to globular
systems for which overall and internal motions are well
separable. The approach provides reorientational eigenmode
information depicting correlated dynamics of different polypep-
tide parts together with mode-specific correlation times. Isotropic
RED is applicable to a large variety of macromolecular systems
irrespective of their shape and whether they are folded, partially
folded, or unfolded, including single and multidomain proteins,
peptides, nucleic acids, and polymers in solution.
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Appendix

A1. Spectral Densities and NMR Relaxation Parameters.
The spectral density function of eq 1 enters the standard
expressions for theT1, T2, and NOE relaxation parameters
according to the relaxation theory of Bloch, Wangsness, and
Redfield.45,46 The longitudinal relaxation rate 1/T1 of a 15N
nucleus is given by

whereµ0 is the permeability of vacuum,h is Planck’s constant,
γN, γH are the gyromagnetic ratios of15N and1H nuclei,∆σ is
the chemical shielding anisotropy constant, andrNH is the N-H
distance.ωN and ωH are the Larmor frequencies (in rad/s) of
the15N and1H nuclei, respectively. The corresponding expres-
sions for 1/T2 and the{1H}-15N NOE are

where Γj ) 1/20(µ0/4π)2(h/2π)2γN
2 γH

2 〈rNH
-3〉2{6Jj(ωH + ωN) -

Jj(ωH - ωN)} is the 1H f 15N cross-relaxation rate constant.
A2. Isotropic Average of the Covariance Matrix of

Spherical Harmonics of Rank L. For each MD snapshot, a
n(2L + 1)-dimensional vector|Y(t)〉 can be constructed
from the spherical harmonicsYLM(Ωj) evaluated at then
directionsΩj(t) ) (θj(t), æj(t)), j ) 1, ...,n, of the internuclear
vectors8

The n(2L + 1) × n(2L + 1) covariance matrixP is then
constructed as8

where〈Y| is the complex-conjugate row vector of column vector
|Y〉. The horizontal bar indicates an ensemble average over the
N conformations or a time average over a trajectory.

An analytical expression is now derived for the isotropically

averaged matrixP: Q ) 〈P〉iso. The term|Y〉 〈Y| of P in eq A5
averages to zero forL * 0, since〈YLM(Ω)〉iso ) ∫ dR sin â dâ
dγ YLM(Ω) ) 0. The isotropic averaging of the term|Y〉 〈Y| can
be carried out considering individual matrix elementsPM′k,M′′l
and by using the well-known transformation properties of

1
T1,j

) 1
20(µ0

4π)2( h
2π)2

γN
2 γH

2 〈rNH
-3〉2 ×

{3Jj(ωN) + Jj(ωH - ωN) + 6Jj(ωH + ωN)} +

1
15

ωN
2(∆σ)2Jj(ωN) (A1)

1
T2,j

) 1
40(µ0

4π)2( h
2π)2

γN
2 γH

2 〈rNH
-3〉2 ×

{4Jj(0) + 3Jj(ωN) + Jj(ωH - ωN) + 6Jj(ωH) + 6Jj(ωH +

ωN)} + 1
90

ωN
2(∆σ)2{4Jj(0) + 3Jj(ωN)} (A2)

NOEj ) 1 +
γH

γN
T1,jΓj (A3)

|Y(t)〉 ) |YL,-M(Ω1), YL,-M+1(Ω1), ...,YL,M-1(Ω1), YLM(Ω1),

... YL,-M(Ωn), YL,-M+1(Ωn), ...,YL,M-1(Ωn), YLM(Ωn)〉 (A4)

P ) (|Y〉 - |Y〉)(〈Y| - 〈Y|) ) |Y〉 〈Y| - |Y〉 〈Y| (A5)
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spherical harmonics under 3D rotationR(R, â, γ) defined by
the three Euler anglesR, â, γ:64

whereDM′M
L (R,â,γ) are the Wigner matrix elements. It follows

where PL(x) is the Legendre polynomial of orderL, and
Ωk - Ωl denotes the angle between directionsΩk and Ωl.
δM′,M′′ denotes the Kroneckerδ. Equation A9 was obtained from
eq A8 by using the orthonormality relationship of Wigner matrix
elements,64

and eq A10 was obtained from eq A9 by using the addition
theorem of spherical harmonics64

A number of features are worth mentioning:
(1) Because of isotropic averaging, the elements of matrix

Q depend only on intramolecular angles,Ωk - Ωl, and not on
the overall orientation any longer.

(2) Matrix Q can be represented as the direct matrix product

where1 is a 2L + 1-dimensional unity matrix, andM is an × n
matrix with elements

Each eigenvalue ofQ is (at least) 2L + 1 times degenerate,
and all information contained inQ is also contained inM . Thus,
the spherical symmetry introduced by isotropic averaging leads
to a substantial simplification of the covariance matrixQ.

(3) MatrixesQ and M can be diagonalized,Q|q〉 ) λq|q〉
andM |m〉 ) λm|m〉, where the eigenvectors ofQ can be easily
constructed from the eigenvectors ofM :

where|ej〉 are the 2L + 1-dimensional column vectors|e1〉 )
(1, 0, ..., 0)T, |e2〉 ) (0, 1, ..., 0)T, ..., |e2L+1〉 ) (0, 0, ..., 1)T.

(4) The diagonal elements ofQ are Qii ) 1/(4π), and the
diagonal elements ofM areMii ) 1. The traces ofQ andM ,
which are the sum of their respective eigenvalues (mode
amplitudes), are proportional to the number of vectorsn:

A3. Correlation Times of Individual Modes. In matrices
Q and M , the time-sequence information of the snapshots is
lost. Therefore, motional correlation times associated with
individual reorientational eigenmodes cannot be determined
from Q andM . Correlation functions can be reconstructed by
projecting vector|Y(t)〉 of eq A4 constructed from the snapshot
at timet on eigenvector|q〉, aq(t) ) 〈q|Y(t)〉, which leads to the
correlation function

whereq ) (2L + 1)m + l - L, andl ) -L, ...,L. The average
extends over snapshots sampled at timesτ ) 0 f T - t.

Correlation functions forM are obtained by summing up the
2L + 1 correlation functionsCm,l(t)

that belong to the 2L + 1 degenerate modesq. If the correlation
function Cm(t) decays exponentially, the correlation timeτm

associated with mode|m〉 is determined by9

whereCm(t f T) symbolizes the plateau value ofCm(t):

For systems where internal and overall tumbling motions
are separable, Cm,l(t) and Cm(t) and their correlation times
reflect both internal motions and overall motions. It is shown
in the Supporting Information that for isotropic tumbling with
correlation timeτc, theeffectiVecorrelation timeτm of aninternal
mode with an internal correlation timeτm′ is given by

which is analogous to the situation encountered in analytical
motional models and in the model-free approach.

A4. Time-Correlation Functions for Individual Inter-
actions. We consider the caseL ) 2. The contribution of

(63) Koradi, R.; Billeter, M.; Wu¨thrich, K. J. Mol. Graphics1996, 14, 29-32.
(64) Zare, R. N.Angular Momentum; John Wiley & Sons: New York, 1988.

|q〉 ) |m〉 X |ej〉 (A15)

Tr{Q} ) n(2L + 1)/(4π), Tr{M} ) n (A16)

Cq(t) ) Cm,l(t) ) 〈am,l*(τ + t)‚am,l(τ)〉τ (A17)

Cm(t) ) ∑
l)-L

L

Cm,l(t) (A18)

τm = 1
Cm(0) - Cm(t f T)

∫0

T
(Cm(t) - Cm(t f T)) dt (A19)

Cm(t f T) ) ∑
l)-L

L

Cm,l(t f T) = ∑
l)-L

L

|〈am,l(τ)〉τ|2 (A20)

1/τm ) 1/τc + 1/τm′ (A21)

R(R, â, γ)YLM(Ω) ) ∑
M′

DM′M
L (R, â, γ)YLM′(Ω) (A6)

QM′k,M′′l ) 〈PM′k,M′′l〉iso ) 〈YLM′(Ωk)YLM′′*(Ωl)〉iso )

〈R(R,â,γ)YLM′(Ωk)R
†(R,â,γ)YLM′′*(Ωl)〉Râγ (A7)

)
1

8π2
∑

N′,N′′
∫ dR sin â dâ dγ ×

DN′M′
L (R,â,γ)YLN′(Ωk)DN′′M′′

L *(R,â,γ)YLN′′*(Ωl) (A8)

)
1

8π2
∑

N′,N′′
YLN′(Ωk)YLN′′*(Ωl)

8π2

2L + 1
δM′,M′′δN′,N′′ (A9)

)
δM′,M′′

2L + 1
∑

N′)-L

L

YLN′(Ωk)YLN′*(Ωl) )

δM′,M′′

4π
PL(cos(Ωk - Ωl)) (A10)

∫dR sin â dâ dγ DM′N′
L (R,â,γ)DM′′N′′

L *(R,â,γ) )

8π2

2L + 1
δM′M′′δN′N′′ (A11)

PL(cos(Ωk - Ωl)) )
4π

2L + 1
∑

N′)-L

L

YLN′(Ωk)YLN′*(Ωl) (A12)

Q ) 1
4π

M X 1 (A13)

Mkl ) PL(cos(Ωk - Ωl)) (A14)
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modem to the decay of the correlation function of interaction
j of eq 2 is the principal order parameter component

whereδSj,m
2 g 0, and∑mδSj,m

2 ) 1. The correlation function
Cj(t) can be expressed as a weighted sum of the normalized
correlation functionsCm(t), that is,Cm(0) ) 1, belonging to
iRED modesm

where m numbers all reorientational eigenmodes, including
overall and internal motions, leading to a complete decorrelation
at long timesCj(t f ∞) ) 0. If Cm(t) is monoexponential,Cm(t)
) e-t/τm, as was found to be the case in good approximation for
nearly all modes, the real part of spectral density functionJj(ω)
of eq 1 is obtained by analytical cosine-transformation

Equation A24 provides a formulation of the spectral density
function in terms of principal order parameter components
δSj,m

2 of the covariance matrixM and the correlation timesτm.
Theτm parameters can be used as fitting parameters as discussed
in the text.

A5. Eigenmode CollectivityK. A measure for the degree of
collectivity of an eigenmode is the number of vectors that are
significantly affected by this mode. A suitable measure is the
collectivity κ65

where|m〉k is thekth component of the normalized eigenvector
|m〉. κ ranges between 1/N and 1 and gives the fraction of vectors
expressed as the total percentage that is significantly affected
by reorientational eigenmode|m〉.

A6. Separability Measure.A measure for the separability
of overall and internal motions is defined by the separability
index60

where the eigenvaluesλi of the covariance matrix are sorted
with respect to their magnitude. The numerator corresponds to
the trace of the covariance matrix ()n), while the denominator
corresponds to the trace minus the 2L + 1 largest eigenvalues.
The larger thegL, the better separable are the overall and internal
motions. In the limiting case of a static structure,gL f ∞.

Supporting Information Available: Figures with distributions
of iRED correlation times of native ubiquitin and the A-state.
Theoretical treatment of the effect of overall tumbling motion
on correlation times of internal iRED modes (PDF). This
material is available free of charge via the Internet at
http://pubs.acs.org.
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(65) Prompers, J. J.; Lienin, S. F.; Bru¨schweiler, R. InBiocomputing: Proceed-
ings of the 2001 Pacific Symposium; Altman, R. B., Dunker, A. K., Hunter,
L., Lauderdale, K., Klein, T. E., Eds.; World Scientific: Singapore, 2001;
pp 79-88.

δSj,m
2 ) λm(|m〉 〈m|)jj (A22)

Cj(t) ) ∑
m

δSj,m
2 Cm(t) (A23)

Jj(ω) ) ∫-∞

∞
Cj(t) cosωt dt ) ∑

m

δSj,m
2

2τm

1 + ω2τm
2

(A24)

κm )
1

n
exp{-∑

k)1

n ||m〉k|2 log||m〉k|2} (A25)

gL ) ∑
i)1

n

λi / ∑
i)1

n-(2L+1)

λi (A26)
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